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Abstract. A general formula for the generating function of an arbitrary coupling-re-
coupling coefficient of SU(2) is derived via the Bargmann formalism and graphical calcula-
tions. The result is expressed in terms of sums over two finite sets only of subgraphs of the
Jucys graph of the coefficient. A new explicit expression for the coefficient is obtained.

Index of notations

We give the main notations and the paragraphs in which they are defined.

§1:
§2:

§4:

§5:
§7:

§8.1:
§8.2:

CRC: coupling-recoupling coefficient

G: Jucys graph

k;, x;, A;: lindices; 1;, &, n;: corresponding variables
L=(,...,1,,): array of the ng ! indices of a CRC
Eq:set ofall L

G, = Gj,, : value of the CrRC

Ny : normalization constant equation (1)

@, : generating function

(ab): branch

la...z],]a...z] etc: paths

(a...z):circuit

(D). set of the elements of diagram D

K¢, Qg : sets of closed and open diagrams of G
2,9y, Dy, Ry, Fg, Fy, Hg, Hg, Qg sets of diagrams
M(D), «(D), L(D), I{D): functions of diagram D

a, B, B: sets of branches

a, b, c, d, f: matrices

v, w: vectors |d| : number

7(C): function of circuit C

Sik> Stxs Rep, FG, U,y sets of diagrams

w,, w,: sets of subscripts.

1. Introduction

A coupling-recoupling coefficient (CRC) of SU(2) is most easily described by its Jucys
graph (Jucys and Bandzaitis 1965, El Baz 1969, Bordarier 1970). Generating functions
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for the 3j, 6j and 9j coefficients were obtained by Schwinger (1952, see also Biedenharn
and Van Dam 1965 pp 229-79) in a creation and annihilation operator approach. In a
treatment of the SU(2) group based on entire function spaces Bargmann (1962, see also
Biedenharn and Van Dam 1965, pp 300-16) obtained generating functions for the 3;j
and 6j coefficients. Generating functions for some other cRC were derived in the Barg-
mann scheme: by Wu (1972) for the 9j and by Huang and Wu (1974) for the 12j and 15;j
coefficients.

In this paper a general formula for the generating function of an arbitrary CRC is
derived. For a Jucys graph G we define the generating function of the CRC it represents
(§2). The significance of graph G is made clear in § 3. We introduce certain graphs
drawn on G that we call diagrams of G (§ 4). A monomial M(D) is defined (§ 5) for every
diagram D of graph G. The final formula for the generating function is expressed in
terms of the sums of M(D) over two finite sets of diagrams of G.

At first, we use the method Bargmann (1962, see also Biedenharn and Van Dam
1965, pp 300-16) used to obtain the generating function of the 6j coefficient. A general
CRC is obtained essentially from 3j coefficients by summations on projection quantum
numbers. Its generating function is expressed in terms of integrals of a product of
generating functions of 3j coefficients. An algebraic expression for the generating func-
tion is then obtained (§ 7) by carrying out the integrations. At this point there is a slight
difference from Bargmann’s method: here all the integrations are carried out at one stroke
whereas in Bargmann (1962, see also Biedenharn and Van Dam 1965, pp 300-16), Wu
(1972) and Huang and Wu (1974) the integrations are carried out in several steps.

In § 8 the algebraic expression is transcribed in terms of sums over generally infinite
sets of diagrams and these sums are reduced. The final formula only contains finite sums.

The usefulness of the generating functions is illustrated in § 9 where an explicit
formula for an arbitrary CRC is extracted and in § 10 where an example of recursion
relations is given. Also in § 9 we prove that the symmetries of the 3j, 6j and 9; coefficients
induced by invertible linear transformations on the j of the coefficients, are the known
symmetries of the coefficients.

2. Definition of the generating function @

In this section we define a number of notations, most of which are adopted from Bargmann
(1962, see also Biedenharn and Van Dam 1965, pp 300-16), and the generating function
@, of a Jucys graph G.

We utilize Jucys graphs with only two types of free branches (co- and contravariant)
and one kind of vertex. The diode symbols represent 2jm coefficients. For the sake of
simplicity we shall assume most of the time that the graphs do not contain diode symbols.

A Jucys graph G is made up of a vertices, b free branches and ¢ bound branches.
Here G is considered as a structure, not assigning peculiar values to the j and m. For
every vertex v, where three branches j,, j, and j; meet, we define:

Jo = Jj1+j2+]ss k= J.,—2j; (1<i<g3)

Wecall k;, k,, k; the [ indices of vertex v. The triangle condition (j,, j,, j;) is equivalent
to the condition: k;e N (1 < i < 3) (N is the set of non-negative integers). For every
free branch (j, m) we define k = j + m, 1 = j—m that we call the ! indices of the free
branch. The condition m projection of j is equivalent to ke N, Ae N. We arrange the
I indices of the vertices and free branches as an ordered set L = (I;,1,,...,1,,) with
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ng = 3a+2b. When the j and m take all possible values compatible with triangle and
projection conditions, L runs on a subset E; of N" (the ] indices are not independent :
to every bound branch j; corresponds the relation k, + ky = kj+ k3 (=2j,), to every
freebranch (j,, m,)therelationk, + 4; = k, +k,(=2j,)). Forevery L € E;;, correspond-
ing to particular values of j and m, we denote the value of the crc by G, or by G;
and we define a normalization constant

T, + D172
[L!] ’

Jimyg .

NL = ( (1)
where the product runs over the vertices of G and [L!] = [,!],!. oy

We now define the generating function ®; of graph G as an entire function of
T=(1;,73,...,T,) €C™ by

Z N, G o, (2)
LEEG
where ) = 17} ... 1l . We say that 1, is the variable corresponding to the [ index /;.
Instead of t;, we shall often use the notation &; or n; corresponding respectively to
! indices of the type k or 4.

3. Elementary operations on graphs and generating functions

The graphs of the 3j coefficient (! /2 %) and of the 2jm coefficient 6, 5, are represented
on the left of figures 1 and 2. Their generating functions are known and will be given in
§6. The most general CRC is obtained from 3j and 2jm coefficients by carrying out a
sequence of elementary operations : product, change of type of an index (co- and contra-
variant), permutation of j and summation on m. In terms of graphs these operations
are: union of graphs, changes of the type of a free branch and sign of a vertex, connecting
of two free branches. When these elementary operations (to which we add the change of
direction of a free branch) are made on Jucys graphs, the generating functions transform
in a definite way that we now describe in detail.

jim N A\ g
Tim |
12 2 T /3 3 )L\ /)\\ m /\ /
Ta#12¢5 —1,8aM3 =& —nn’
Figure 1. The graph, two open diagrams and their  Figure 2. The graph, two open diagrams and their
associated monormials for the 3/ coefficient. associated monomials for the 2jm coefficient.

3.1. Product
To the product of two cRrC of graphs G’ and G” corresponds the union of the graphs
G = G’ v G" and the product of the generating functions ®; = ;. ®;..

3.2. Types of a free branch

CRC with co- and contravariant indices are described by graphs with two types of free
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branches (figure 3, where, as in the following, we represent part of the graph as a box).
The generating function of G is denoted by ®4(&, 1, T), Where, as in the following, the
variables 7 correspond to the I indices Ly of part B of the graph and the first variables
correspond to the I indices of part G — B (here the variables &, # correspond to the [
indices of the free branch x,A). Graphs G and G’ of figure 3 are related by
G = (=1Y""G,_,,  or.in terms of [ indices Gy,;, = (— 1)1, We then have:

(DG'(£,! 7”, T/B) = (DG( - 'Il, é‘/’ T/B)
| .
s L&

L

G G’

Figure 3. Change of the type of a free branch.

3.3. Sign of a vertex
At each vertex the branches are ordered but for a cyclic permutation. This order is
indicated by a + or — sign. For the graphs in figure 4 we have

G = (_1)j1+iz+}'36

vjz2is... Jrizise..
or
’ _ ky+ky+ks
Grioksry = (= D T2 70G ok,
and
' ’ ’ ’ ’ ' ’
Qg (1), 75,75, 18) = Pg(—17, — 15, — 75, Tp),

where the variables 11, 15, 75 correspond to the [ indices &, k,, k3 of the vertex.

/1

/s
/2 + jz —
B 1 By
b
G G’

Figure 4. Change of the sign of a vertex.

3.4. Contraction

For the CrRC G}y jne. . (figure 5) the contraction on the co- and contravariant indices
m’ and m” is made when j' = j* by summing over m" = m". Graph G corresponds to the
definition:

7 7
GLB = z Gj’m’j’m‘.‘. = z O Bz K'A'k"A"Lgs
o

i

jm
? "
o B 3,
G’ G

Figure 5. Contraction.
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where the second sum is over L' = (x', 2, k", A", Lg)€ Eg- with given Lg. The cor-
responding graph G is also given in figure 5. Since Ny = (k! A1 k"1 A"!) 12N, the

generating function of G is obtained from the series expansion of O (&0, & n", 18)
by replacing &* n'* &% #"* by k! A'! 8, 8;.3~. Remarking that

KA By B = f £ 7F Ot Ay (6) dpty )

1 .~z

(where for z = x + iy, z = x—iy du,(z) = n~ ' e~ dx dy is integrated over R?) the

generating function @ can be expressed as:

glrs) = f O (€, 7, & 1 t) s () dy ().

3.5. Direction of a bound branch

From the definition of contraction, for two CRC represented by graphs G and G’ (figure 6)
differing by the direction of branch j, we have

/ — (- 13 .
Gjljzjs--- - ( 1) Ghiz.ism
or
1 . k) +ks
GrioksLs = (= D279y kyksLp

and

d)G'(T/l s T,Z s T/3 > T,B) = (DG(T!I [ T/Z’ —7-'5 s Tii)

Figure 6. Change of the direction of a bound branch.

Likewise, changing the direction of the diode symbol in the 2jm coefficient (figure 2)
gives a factor (—1)*/ and a similar relation between generating functions.

4, Diagrams

This paragraph is devoted to the definition of certain graphs drawn on the Jucys graph.
For a Jucys graph G we denote by a, b ... the vertices, by (ab), or (ba), with s=1,...n
the n branches (n < 3) connecting aand b. A passage at vertex b is defined as the ordered
set of two different branches ¢ = (ab), and ¢' = (bc),, which are linked at vertex b.
We represent it by ]¢ ¢'[ or Ja b c[, where to simplify notations subscripts s and s’ are
not expressed. Similarly, from now on, branch (ab), will be denoted by (ab), omitting
subscript s. Branch ¢ (or ¢’) and passage ]¢ ¢'[ are said to be connected. A path is an
ordered sequence of alternating branches and passages connected one to the following.

Example: ¢ = (ab),1¢ ¢'[. ¢' = (bc), 1¢'¢"[, ¢" = (cd).
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This path is represented by [ab c d] or [¢ b ¢ ¢"]. The direction of the path on branch ¢’
is the one from b to ¢. The extremities of [¢ b ¢ ¢"] are branches ¢ and ¢”. We use the
notations Jab cd] or ]¢ b c ¢”] to represent the path obtained from the preceding one
by striking out branch ¢, and similarly {¢ bc ¢"[, J@¢ bc ¢"[ etc. Paths [¢pb...z¢']
and [¢' z...b ¢] are said to be reversed. A free path is a path whose extremities are free
branches. A directed circuit is an ordered cycle of alternating branches and passages
connected one to the following.

Example: ¢ = (ab),1¢ ¢'[. ¢ = (bc), 1¢'¢"[, ¢" = (ca),]1¢", d[.

This circuit is represented by (a b ¢) or (b ¢ a) or (c a b) (this notation causes no confusion
with that for branches). A = circuit is a circuit that can be separated into n identical
circuits (n > 1) (example: (ab ab)). A circuit which is not a = circuit is called non-r.
Circuits (a b c) and (c b a) are said to be reversed ; they both represent the same non-
directed circuit. A set D of paths P, P, ... and circuits C,, C,... (or: paths and non-
directed circuits) is called a directed (or : non-directed) diagram and it will be represented
graphically on graph G by thick lines with directions indicated if necessary by arrows.
We say that diagram D is composed of paths P,, P, ... and circuits C,,C,.... The
passages and branches of a diagram D, each passage or branch being counted as many
times as it appears in D are called the elements of D. Their set will be denoted by #(D).
A diagram the elements of which are not repeated is said to be simple. A closed diagram
is a simple diagram composed of n non-directed circuits (n > 1). An open diagram is a
simple diagram composed of one free path and of n non-directed circuits (n = 0).

We define the following sets of diagrams of G, V being a set of branches of G:

2 = {diagrams of G};
2y = {D € 2:some branches of V appear in #(D)}; %, = 2 — Dy ;
Ry = {De P: every branch of V appears exactly once in #(D)};
= {closed diagrams};
Q; = {open diagrams};
Hg = {non-directed circuits};
H; = {non-directed, non-= circuits} ;
F¢ = {free paths};
F; = {free paths with different extremities} ;
¢ = {simple free paths}.

=
o
I

The sets K, Qg and Qg are finite. The other sets are generally infinite.

5. The function D — M(D)

In the following paragraphs, various algebraic expressions will be interpreted in terms
of diagrams by means of a monomial M(D) defined for every diagram D. If D is a
directed diagram we construct the monomial M(D) by multiplying the following factors
which are associated with various parts of D:

(a) For every free branch jm belonging to (D), of I indices x, A and corresponding
variables £, 7, we associate a factor given in figure 7 and depending on the type of the
branch and on the direction of the diagram on the branch.

(b) For every passage ]j, j,[ belonging to #(D) (vertex v is connected to branches
JisJ2-J3; the | indices of v are k;, k,,k; and the corresponding variables T15T2,T3)
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(see figure 8) we associate the factor 7, (or —1;) if the order of the branches at the vertex
18 1, J2,J3 (01 ja,jy1,J3)-

(¢) For every bound branch belonging to (D) (figure 9) we associate a factor —1
(or + 1) if the directions of the branch in D and G are identical (or opposite).

{(d) Every time diagram D passes backwards through a diode symbol (figure 10)
we associate a factor — 1.

(e) For every circuit in D we associate a factor — 1.

jm T T
G 3 o )
— 1
p Tl I
S I e U S e Gy
L] e L5 ek
G’ —-n é G T4 —Tq
Figure 7. Computation of M(D Figure 8. Computation of M(D).
e ﬁ BEIRERD
i j E ¥
+ 1 G +1 -1
Figure 9. Computation of M(D). Figure 10. Computation of M(D).
Remarks

(1) M(D) = M(D) if D’ is the diagram obtained by reversing the direction of some.
circuits in D. Thus M(D) is also defined for non-directed diagrams.

(i) M(D") = —M(D) if D" is obtained by reversing the direction of a path of D
whose extremities are bound branches.

(iii) The monomial M(D) is transformed in the same way as the generating functions
in the elementary operations in §§ 3.2, 3.3 and 3.5 (diagram D remaining unchanged).

(iv) If diagram D is composed of diagrams D, and D,, then M(D) = M(D,)M(D,).
If diagrams D and D’ are composed of n and n’ circuits only and have the same set of
elements, then M(D) = (—1)"""M(D").

(v) In the following paragraphs, there occur infinite sums X M(D) and products
IT(1+ M(D)) over sets of diagrams like Hg;, Hy; and F. Since the number of diagrams
of these sets that have p elements is an O(u?) for p — oc, the sums and products are
absolutely convergent for sufficiently small 7.

We also define the functions D — «(D)into {—1, +1}, D = [(D)into N (1 < i < ng)
and D - L(D) = (I;(D), I,(D),..., 1, (D)) into N" by setting M(D) = (D)r“‘"’” We
call L(D) the ! indices of diagram D. In § 9 it will be shown that the / indices of a diagram
composed of circuits and free paths can be interpreted as the / indices of a CRc.

6. The generating functions for the 3j and 2jm coefficients

For the 3j (figure 1) we denote the [ indices by k,, k,, k3 (vertex), k;, A; (branch jm,
1 < i < 3) and the corresponding variables by t,,1,,73, .1, (1 < i< 3). There are
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six open diagrams on the 3j, two of which are drawn on figure {. We have

Ty Ty T3
Y M= -& & &G
TeQs,;

M M2 M3

so that equation (3.21) in Bargmann (1962, see also Biedenharn and Van Dam 1965, p 310)
for the generating function of the 3j coefficient can be transcribed in terms of diagrams as::

0, = exp(— Y M(T)). (3a)
TeQs,
The two open diagrams of the 2jm are given in figure 2, from which:

Dy jm = exp(&S'+nn) = exp( - 2 M(T))- (3b)

TeQ;m

7. Algebraic expression of the generating function @

In this section we obtain an algebraic expression for the generating function ®; by
starting from the generating functions for the 3j and 2jm coefficients and carrying out a
sequence of elementary operations (§ 3). We represent (figure 11) graph G with its n
bound branches i (1 < i < n) and p free branches i’ (1 < i < p) of arbitrary types (not
represented), so that the box B contains only the vertices and diode symbols of the graph.

Figure 11. Obtainment of graph G by contractions on G'.

G is obtained from G’ (figure 11) by n contractions, ie by connecting the free branches i
and i (1 € i < n) of graph G’ (elementary operation of § 3.4). Since G’ is obtained from
3j and 2jm coeflicients by the elementary operations of § 3.1, 3.2 and 3.3, we get using
equations (3a, b) and remark (iii) of § 5:

b = exp( - T;G’ M(T)). 4

There is either zero or one open path (denoted by [i k]) starting from a given branch
i and ending at another given branch k in graph G’. We recall that the paths obtained
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by removing branch i and/or k from [i k] are denoted by Ji k[, [i k[ and ]i k]. If path
[i k] does not exist we put M([i k]) = 0. The branches i and k are taken from the sets
B=11,23...n}, B={1,2,3...7} and a={1,2...p}. We put for ieBfuUp,
jepupB. kealea

aij = M(]l-]D’ bil = M(]l l])v v = Z b”, ij = M([k}[),
lea
W= 2 cjy dy=M(kD) and | =Y dy.
kea kea
lea
Let
t=1(, 8 Gy =0T, =N —1R), U=(5,85... &Gy =My M2 — )
and

z=M N2 M €1,83... 8R)

be vectors of the space C2", where ¢&;, n; are the variables corresponding to the [ indices
ofthefreebranchie f U B;u.u' = T} uu}isthescalar product ofu = (u, ...u,,) e C*"
and v’ = (1) ... u5,) € C*"; at is the vector with component i given by (ar), = Z}2, a;it;.
We have z = ft' with

0 |1,
f= (—ln 0)

Y M(T) = zat+zv+we+|d =t fat+1 . fr+wt+|d.
TeQg'

and

According to § 3.4 the generating function @ is obtained from equation (4) by:
Q. = f exp(—1.fat — i fo—w.r—|d]) du,,(t) (5)

where du,,(t) = 1172, dp,(t;). The integral can be computed, for fa sufficiently small, by
the method of the appendix of Bargmann (1962, see also Biedenharn and Van Dam
1965, pp 315-6):

@ = [det(1+fa)] ™! explw. (1+fa) " fo—|d]]. (6)

8. Evaluation of the generating function in terms of closed and open diagrams

Most of the quantities in equation (6) were interpreted (§ 7) in terms of diagrams of G'.
In this section interpretations in terms of diagrams of G are obtained. We first trans-
form the determinant (§ 8.1) in equation (6), expressing it as a generally infinite product
over the non-directed non-z circuits of G. With the aid of a formula in the appendix it
is reduced to an expression containing only a finite sum over the closed diagrams of G.
Similarly (§ 8.2) the exponent in equation (6) is shown to be minus the sum of M(T)
over the free paths T of G. It is then expressed in terms of finite sums only over the
closed and open diagrams of G. Some examples are considered in § 8.3.
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8.1. Transformation of determinant in equation (6)

Letting x = — fa we have
In det(1 —x) = Tr[ln(l —x) Zx,,+22x” J,+§Zx,,xkxk,+... (7

where the sums are made on ie u B, jefu B ke fu B .... We now interpret equation
(7) in terms of diagrams of G. Forief, je fu B, we have x;; = —a;;, x;; = a;;, hence
x;; = M(P;), x;; = M(P,;), where P; is the path of G composed of branch i and path
1i j[ (as defined in § 7) and P,; is the path of G composed of branch i and path Ji j[. Here
the paths Ji j[ and Jij[ of G’ which are contained in box B (figure 11) are interpreted as
paths of G.

Every term of equation (7) is then of the form:
_'xijxjk s X = “M(P,J)M(ij) A M(Pml) = M(C)

where C is the circuit P, Py... P,;. Conversely, let C be a non-directed circuit of g
branches;if C can be separated into n identical non-z circuits S(n = 1), weset ©(C) = n.
Then M(C) = —[— M(S)]"©. M(C)appears 2g/=(C) times in equation (7). So equation
(7) is transcribed as a sum on the non-directed circuits, and then on the non-directed
non-m circuits:

Indet(1—x) =2 Y M(C)/r(C)=2 Y (M(S)—HM(S)H +3HM(S)’ — ...]

CeHg SeHg
=2 Z In(1 + M(S)).
SeHg
Hence
2
det(l —x) = ( H (1+M(S))) . (8)
SeHg

From equation (A.5) (with ¥V = ¢F (null set)) in the appendix the product in equation (8)
is expressed as a finite sum over the closed diagrams:

2
det(1 4+ fa) = (1+ Y M(D)) . )

DeKc

8.2. Transformation of the exponent in equation (6)

Expanding (1 —x)~! in powers of x we get:

lfv = Z Ckl(fb):l+ Z Ckl lj{fb)jl+ Z CpiX u jm fb)ml+ (10)
kil kiji kijml
where the sums are on kea,lea,iefUB, jefuBmeBUp,.... Foriepf, lea we

have (fb), = b, (fb), = —b, and then (fb), = —M(Q,), (fb), = —M(Q,), where Q,,
is the path of G composed of branch i and path Ji /] of G’ (now interpreted as of G) and
0, is the path of G composed of branch i and path Ji [].

Every term of equation (10) is then of the form:

Ckl'\‘lj' - Xon fb)nl = —M [leM(P) e M(Pmn)M(in) = _M(T)

where T is the free path of G:[ki[, P;... P,,,Q,. Conversely to every free path T of
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G there corresponds one term in equation (10), if T passes over a bound branch of G, or
one term in —|d| if T does not pass over a bound branch. The exponent in equation (6)
is thus expressed as a sum over the free paths:

w.(1+fa) " fo—ld = — Y M(T). (11)
TeFg
If Tand T’ are reversed free paths that start and end on the same free branch, then by
§ 5, remark (i) M(T) = —M(T’) so that the sum in equation (11) can be limited to
TeFg.

We now define a procedure that decomposes every free path into a simple free path
and circuits. It will then be possible to simplify equation (11). We need some notations.

Lett = (¢yuyu, ... u,0,.11€ Qg be a simple free path of p vertices. We introduce
the following two sets of labels occurringin t: w, = {1,2,...,p—1}, 0w, = 0, U {p} and
we put ¢; = (u;_u;) € B(t) for 2 < i € p. For ke w; let S, be the set of paths of the
form [y, ...zup, [ that do not contain branches ¢, (1 < i < k) and §;, the set of
paths of S, that begin with branch ¢, (so §; , = &). For kew, let R, , be the set of
non-directed circuits that pass over branch ¢, , exactly once and that do not contain
branches ¢, (1 < i < k).

The procedure (p) is defined as follows. Let T = [¥,a,a,...a,¥,.,] € F; be a free
path of n vertices and whose extremities ‘¥, and ‘¥, ., are different free branches. We
put ‘¥, = (a,_,a) € Z(T) (2 < k < n). If Tis not simple let v be the first vertex in the
sequence a,q, ... a, that appears at least twice, k and k' the smallest and greatest num-
berssuch thatag, = g, =v. Pt T' = [W,a,... qap+,... ¥Y,+1] € Fgand

T = [akak+1 v ak'lPk‘+1[.

Then T can be reconstructed by inserting path T” into path 7" at vertex a,. Notice that
T" does not pass on branches W, (1 < i < k)and that Z(T) # #A(T') v #(T") in general.
Repeating on T’ the same process as on T, and iterating we obtain uniquely determined
teQq, w = w;and for ke w paths T, e S, ;.

Conversely let re Q,;, w' = w, and for ke ' paths T, €S, ,, then by inserting, for
every k in o', path T, at vertex u, of t we obtain a free path T ¢ Fg;, which when decom-
posed by P gives back the same ¢, w and T,. So the correspondence:

teQs
TeF;e 0 o, (p)
T.eS ctkew)

is one-to-one.

Let Fg be the set of paths T e F; such that in p every T, € S} ;.

Ifinp,foragivenk, T, €S, —S;  thenitisof the form T, = [wuZy v, ... v, Zuydy 1,
with identical first and last branches (u,Z) and T} = [, Zy, ... y,y1 Zuydy++[ is a path
of S, y— S, that is different from T,. By replacing T, by T} in p we obtain T instead of
T, and from § 5, remark (ii) M(T") = —M(T). Thus Zyep, -5z M(T) = 0.

If T € F¢ we pursue the decomposition further. For a given k, let #(k) be the number
of times branch ¢, .., appearsin T, € S; , (r(k) = 1). T, can be decomposed in an ordered
sequence C%,CY%,..., C¥, of circuits of R, ;. Conversely let C¥,C%,..., Ck,, be an
ordered sequence of arbitrary length r(k) > 1 of circuits of R, . If C¥ = (uuuy4, ... 2)

we define path P, = [wu. ... Zupy.[. Then by joining paths P,P,... P, we
obtain a path T, of S, ,.
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In summary, the correspondence

te Qg
TeF;2{w c o,
CteR,, 1 <i<rik), kew

is one-to-one, and:
M(T) = M [] U (—M(CH).

Putting X, = X ccr, . M(C), we have then:
S MTy= Y MO J] 0-X e+ X=X+ ...)

TeFg teQc kew:

from which:
Y MT)= Y Mo [T (0+X,07" (12)
TeFg teQq kew,

From equation (A.3) in the appendix, since R, , = Hg N Ry 0 Zy, with
V={¢s,...0} (V=gifk=1) and W= {¢,,,}
and putting U,, = Hg N 2y N Dy
1+X,.= [] 1+M(Q).

CeUy i

The sets (U, y)iew, form a partition of Hg n @y, where W, is the set of the bound branches
of t. Equation (12) becomes:

Y MT)y= Y M@ ] (Q+ME)7!

TeFg teQqg CeHgn Dw,
-1 (1+M(C)))“ T Mo ] (1+MO).
CeHg teQc CeHg A Zw,

And by equation (A.5) {(used with V = ¢ and V = W) in the appendix:

Y M(T) = (1+ S M(D))—l y M(t)(1+ Y  M(D)

TeFg DeKa 1eQc DeKanPw,
-1
= (1+ Z M(D)) z M(T). (13)
DeKg TeQa

From equations (6), (9), (11) and (13) we obtain the final expression for the generating
function:

®; = A2 exp(—A )y M(T))
TeQa

1 (14)
A=(1+ Y M(D)) .

DeKg
The generating function @ is thus expressed in terms of the finite sums of M(D) over
the closed and open diagrams of G. In order to write ®4 explicitly one has to determine
the closed and open diagrams of graph G and compute the corresponding monomials
M(D) by the rules in § 5.
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8.3. Examples

For a 3nj coefficient, equation (14) simplifies to

-2
(1>3",.=(1+ y M(D)) .

DeKsyn,

The 6/ coefficient {J2: /024231 is represented by a tetrahedron (figure 12) with vertices
V(0 < i < 3); branch j, (i < k) connects ¥, and V,; we label the ! indices of vertex V] by

ki; (0 < j < 3,j# i) and the corresponding twelve variables by 7,;. There are seven

WA\

3 T12T02"32 T13%02%31720

Figure 12. The graph, two closed diagrams and their associated monomials for the 6;
coefficient.

closed diagrams (which are simple circuits): four circuits with three branches and
three circuits with four branches; one of each kind is drawn in figure 12, and the cor-
responding M(C) is given. From equation (14):

@s; = (1+710T20T30+ T01T31T21 + T32T02T12+T23T13T03 + T01 710723732 + 702720713734
-2
+703T30T12721)

which is equation (4.15) of Bargmann (1962, see also Biedenharn and Van Dam 1965,
p 313).
The 95 coefficient

v s
Ja Js s
Jr s s
is represented by a cartwheel diagram (figure 13) with vertices V;, V,, Vs, V;., V., Vs,
The ! indices of vertex V; (or: V) are labelled ki (or: ki) (1 < j < 3), the corresponding

variables by t;; (or: 7;;). There are fifteen closed diagrams (which are simple circuits):
nine circuits D, (1 € a £ 9) with four branches and six circuits D, (I € a < 6) with

/N

;o Vo,
“T13T23N3T23 T1172273371 1722733

1+ 2 274

N

Figure 13. The graph, two closed diagrams and their associated monomials for the 9j
coefficient.
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six branches. We describe these closed diagrams (table 1) by their ! indices L(D,) and
the value of «(D,) (cf § 5). We also give the corresponding values of j,. As will be clear
from §9 —e(D)2 =% (1 <a<9) or —¢D,)/4 (1 <a < 6)is the value of the 9j
coefficient with the indicated values of j;. In figure 13 are drawn diagrams D, and D, ..
The generating function can be written down at once from table 1, thus reproducing
the result of Wu (1972), but this will be omitted.

Table 1. Closed diagrams D, (a = 1,2,...,9, 1',2,...,6) of the 9j coefficient (figure 13):
j indices, ! indices (corresponding to vertices V)), «(D,). Null values are omitted.

Zj, ku k:;

1 23 456 789 Vi v, Vi Vi Vs Vi €
1 L1 11 1 1 1 1
2 11 11 1 1 1 1
3 11 1 1 11 1
4 1 11 1 1 1 1 1
5 1 1 1 1 1 1 1 1 -1
6 1 11 1 1 1 1 1
7 11 11 1 1 1 1
8 11 111 1 t 1
9 11 11 1 1 1 1

[
—

1
3 1 11 1 11 1 1 1 1 i -1
4 1 11 11 1 11 11 1 i
5 11 111 1 11 1 1 11 1
1

Huang and Wu (1974) have computed the generating function of the 12/ coefficient
represented in figure 14. Their result can be obtained from equation (14) in which there
are 31 closed diagrams: 29 simple circuits and two diagrams composed of two circuits
(one composite diagram D is represented (figure 14), and M(D) is given in the notation of
Huang and Wu 1974).

The graph G’ for an njm coefficient is a tree in which there are no circuits. The
generating function is then expressed by the same formula as for the 3j coefficient
(equation (4)).

Figure 14. The graph, a closed diagram and its associated monomial for the 12j coefficient.
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9. Explicit expression for the CRC

From the generating function, equation (14), we now obtain a general expression for
any CRC. Symmetries are then briefly considered.

For a Jucys graph G let us denote respectively by T; (I < pand C;(1 £ j<q)
the open and closed diagrams. Expanding equation (14) we get
(ol +181+1)! ( a d
g = Y | [] (= M(T))* [] (= M(CpY~|, (15)
¢ = 2+ D A0 | L] LM

where the sum is over o = (@, a3,..., p)eN" and f = (f,,h,,....B,)€ N1, we have
putle = EP. o;,|fl = T, B;. By comparing equation (15) and equation (2) we obtain
the expression:

(ol 181+ 1! [ e
me(ﬂ( «T)) jl:[l( (C)) ) (16)

where the summation is over the « € N, € N? such that
14 q
L=Y «L(T)+ Y. B,L(C) (17)
i=1 J=1

and N, as defined in equation (1).

The sum in equation (16) can be interpreted as being over all the possible ways of
constructing diagrams from open and closed diagrams that have the same [ indices as
the calculated crc.

For the 3j and 6j coefficients equation (16) can be written in terms of a summation
on one integer and yields Racah’s formulae.

To each closed or open diagram D (=T, or C)) with s vertices, ¢ circuits (t > 0) and
r path {(r = 0 or 1) there corresponds a CRC whose ! indices are L(D). The value of this
CRC can be computed from equation (16) and is (—1)27%%(—2)'«(D). The €T, and
¢(C)) are thus interpreted in terms of the CRc whose / indices are the / indices of D.

9.1. Symmetry

Let E; be the set of L € E; that satisfy polygonal conditions; we denote by E; (1 < i < 1)
the simple non-directed circuits and the simple free paths of G; we put ¢, = L(E)) € E.
The set E; has the following properties:

() if LeE;,meN(1<i< h)thenZ_lnL e Ey;

(i) if Le E; there exist ;e N(1 <i <) such that L = %i_, ae;; moreover if
L = ¢, the g; are unique and a; = J;;.

Property (i) expresses the fact that E; is closed by addition. If G, # 0 property (ii)
stems from the above interpretation of equation (16), since the / indices L (which belongs
to E;) can be written as in equation (17). In fact it is possible to prove property (ii) not
assuming G, # 0, but this will be omitted. The last part of property (ii) expresses that
the e; are extremal elements in Eg.

We define a symmetry to be a function ¢: E; — E;; such that Gy, = X, G, where
X, is a simple algebraic expression. Let us look for symmetries such that ¢ is an
invertible linear function. Then ¢ is a permutation of (¢), <;<,. Indeed putting

dle) = Y ae; and o Ye) = Z be;
=1
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(the a;, and b;; not necessarily uniquely determined) we have
e = Zbijajkek
jk

and from property (ii) of E; we obtain if b;; # 0, a;, = 6,;/b;; for 1 < k < r. Since
a;eN and b e N,a; = 1/b;; implies a; = 1, and ¢(e;) = e;.

We examine the case of the 9j coefficient. The E, are the fifteen closed diagrams D,
described on table 1. We put d, = L(D,), where a runs over 4 = {1,2...9} and
B={1,2...6} s=%%,.,.pd,€Eg is an invariant by ¢. The only sums of three
elements d, that add up to s are:

dy+d,+ds =dy+dy+dg =s. (18)

So ¢ is a permutation of (d),.;. We have d,, =s—d, —~d;—dy, d, = s—d; —d,—dg
so dy +d, =2s—2d,~ds—ds—dg—d, and in general for aeB, beB, a#b:
d,+d, =2s—2d —d;—d,—d,—d, where c, d, ¢, f, g are different indices of 4, this
expression being unique. From this it follows that ¢ is determined by the ¢(d,);5:
for example if ¢(d,) = d,, ¢(d,) = d, then ¢(d,) = d,. Moreover, equation (18) is
invariant by ¢. This leaves for ¢ 6 x 6 x 2 = 72 choices which are the known symmetries
of the 9j coefficient.

For the 3j coefficient the six extremal elements of E; are linked only by a relation
like equation (18). The same method yields the 6 x 6 x 2 = 72 Regge (1958) symmetries
(see also Biedenharn and Van Dam 1965, pp 296-7).

For the 6j the seven extremal elements of Ej; are linked only by relation:

€, +e,+ey; =estestegte,

and the same method gives the 6 x 24 = 144 Regge (1959) symmetries (see also Bieden-
harn and Van Dam 1965, pp 298-9).

We have thus proved that the only invertible linear symmetries of the 3j, 6j and 9j
coeflicients are the known symmetries.

10. Recursion relations

By differentiating @, many relations between G, can be obtained. We give an example
when G is a 3nj coefficient. Since

G,
ng( > M(C)) = ¥ M(C),
i\CeKg CekK,

where K is the set of closed diagrams D whose ! index /(D) is different from zero (and
then equal to 1), we get:

0

0
|:( Z M(C))Tka_rk_( Z M(C))‘L’i'a—;i]q):;nj = Q.

Cek, CeKy

Put G, =0if L¢ E;. For L e E; we obtain the recursion relations:

Y dALVYWL)~LYN, .Gy _po= Y dLYIL) = (LYN, Gy o

L'eL(K,) L”eL(Ky)
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11. Concluding remarks

Some other known results come out quite easily from the present point of view:
symmetries of the coefficients (compared with the symmetries of the graph); simplifica-
tion of graphs with a branch j = 0 or containing a diode symbol linked to a bound
branch; formula (25.15) in Jucys and Bandzaitis (1965) expressing a doubly stretched
9j coefficient in terms of a 3j coefficient.

The explicit formula, equation (16), expresses the CRC as a summation of products
without factorization of terms. The usual method for the numerical computation of a
CRC, say a 3nj coefficient, is to express it as a sum of products of 6j coefficients, each 6;
coefficient being obtained by a summation of products and quotients of factorials.
Equation (16) is thus less efficient for numerical calculations.

Appendix. Proof of some relations between sums and products over sets of diagrams

Two relations are of use in § 8. The first one equation (A.3) relates a sum and a product
over sets of circuits that pass over a given branch w. It is obtained by calculating a
determinant in two different ways. The second relation equation (A.5), which simplifies
an infinite product to a finite sum is a consequence of the first one.

Let w be a branch joining vertices u and «' in a Jucys graph G and put W = {w}.
Let u be a subset of H; U %y, and { (or correspondingly: {') be a set of different paths of
the form {wu...uw](or: Jwu ... u w)) and such that branch w appears only at the extre-
mities. We designate by { and ' the sets composed of the reversed paths of { and {".
We put v=puulu{ ulul and we suppose that { U{ and { v { are disjoint.
The reversed path of iev—pu is designated by I. For ieu we define P(i) as a path
obtained by opening circuit i at branch w. P(i) will be interpreted as path Jwu'...uw]
or [wu...u w[ which give the same monomial M(P(i)). For iev—pu we put P(i) = i.

We now define a square matrix x composed of identical columns by putting
x;; = M(P(i)) foriev,jev.

Matrix x is of rank 1, so:

det(l-x) = 1- ¥ x; =1—= ¥ M(P(@) = 1+ Y. M(i), (A1)

iev ieu ieu

since for ielw {, M(i)= —M() §5, remark (ii). We also compute: In det(l —x)
by equation (7) of §8.1:

Indet(1—x) = — |} N(i,)+3 > N(i,,i))+% Y Ny, iy, i3+ ...], (A2)

iy iyiz iyizis

where we put N(a,b,c...z) = x,,%,. ... x,, and where the sums are over i,ev. As in
§ 8 we interpret the monomials N (a... z)in terms of circuits. But here some monomials,
like N{a) or N(a,b,a',c)withae{, a' €{, be u, ce{ cannot be associated with a circuit.
We now show that these monomials cancel. Let § = (iy,...,i,)ev" and put iy, ; = i
for j=1,2...m If there exist integers k and k' (1 < k < k' < 2m) such that both i,
and i, belong to one of the sets { U { and {' U { and such that i;e u for k < j < k' we
call § non-c. Let s, be the set of non-c S e v™ and put s, = v"—s, —u™ Let A’ (or: A)
be the set of non-directed circuits that can be separated into circuits from pu (or: and paths
from v—y) (each circuit and path may occur several times). If S = (i, ...i )eu" Us),
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then N(S) = — M(C), where C is the circuit of A formed from P(i;), P(i;). .. P(i,); if
Ses,, there is no mterpretatxon of N(S) in terms of a circuit.

If S =(iy, . sip) €Sy Sy = V"—u™, k being the first integer such that i ¢y,
we define f(S) as being the sequence of v — ™ obtained from S by changing i, into i.
From the relations N(S)+ N(f(S)) = 0, f(s,)) = s. and f(s,,) = s,,, we get

Y N(©S)= Y N(§)=0.
Sesm Sesm
If CeA’ and C'e A— A’ are composed of m paths from P(v), then —M(C) appears
m/n(C) times in g, N(S) and —M(C') appears 2m/n(C’) times in Zg., N(S); to get
rid of this factor 2 we rewrite equation (A.2) as:

Indet(l—x) = — Z T N©S)+: T NS)| = ZM(C)

m=1 M\ seum Sesh, éaa m(C)

and by the same method that gives equation (8), we get:

det(l—x)= [] (1+M(C)).

CeHgnA
Comparing with equation (A.1) we get:

[T A+MQC) =1+ M@

CeHgnA icu

In particular for a set V of branches of G by putting u = H; " Ay 0 %, and by taking
U ¢ wlul to be the maximal subset of Z, compatible with the definition of { and {/,
we have A = H; ~ 2y, N 9, and:

1 a+MO)=1+ ¥ MO (A.3)

CeHgNPwn Dy CeHgnRwn Dy

Let A (or correspondingly: A4') be the set of diagrams D composed only of different
circuits from H; n 2y, N @y, (or: Hg » Zy). For a diagram D and a set of diagrams §
we define S x D to be the set of composite diagrams made up of D and of a diagram D’
from S. Let us write, for diagrams D and D', D ~ D’ if and only if (D) = #(D’). It is
clear that this is an equivalence relation in A (or: in A’) defining a family & (or: #') of
equivalence classes. If &/ € & (or &/ € F'), De o/ and if D is not simple we say that
& is not simple. Let &/’ € #' be an equivalence class of A" and D’ € /" such that D’ is
not simple, branch w appearing more than once in #(D’'). .o/’ can be partitioned into
sets of the form &/ x D" with D" € A’ ", and o/ € F (and a set A€ F if D' e A)
these ./ containing diagrams passing several times on branch w. Expanding the
product, we rewrite equation (A.3) as:

1+ Y YMD =1+ ¥ MO (A4)

AeF Ded CeHgnRwn Dy

By comparing diagrams whose set of elements is identical on both sides of equation (A.4)
wesee that Z, MD)=0il.o/ ~ &, = & and 4/ € F. Since

S M) (zMw)) M)

D'esf x D” Ded
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we obtain

Y M(D)=0
D'ed’
if/' e #' is not simple.
From that it follows:

M a+M@O)=1+ Y Y MD)=1+ Y M®D). (A5

CeHgn Iy Ad'eF Ded' DeKgn@v
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