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Generating functions for the coupling-recoupling coefficients 
of SU(2) 

J - J Labarthe 
Laboratoire Aime Cotton, CNRS 11, Bitiment 505,91405 Orsay, France 

Received 28 February 1975 

Abstract. A general formula for the generating function of an arbitrary coupling-re- 
coupling coefficient of SU(2) is derived via the Bargmann formalism and graphical calcula- 
tions. The result is expressed in terms of sums over two finite sets only of subgraphs of the 
Jucys graph of the coefficient. A new explicit expression for the coefficient is obtained. 

Index of notations 

$4: 

We give the main notations and the paragraphs in which they are defined. 
$ 1 :  CRC : coupling-recoupling coefficient 
$ 2 :  G : Jucys graph 

k, , I C ~ ,  ii : 1 indices ; T ~ ,  t i ,  v i  : corresponding variables 
L = ( I , ,  . . . , l n J :  array of the n ,  I indices of a CRC 
E ,  : set of all L 
GL = Gj, , , , ,  : value of the CRC 
NL : normalization constant equation (1) 
(DG : generating function 
(ab) : branch 
[ a .  . . z ] ,  ] a . .  . z ]  etc: paths 
(a  . . . z )  : circuit 
g(D) : set of the elements of diagram D 
K G ,  0, : sets of closed and open diagrams of G 
9,9~, gv, BV, F,, F L ,  H G ,  H L ,  Qc : sets of diagrams 
M(D),  E(D),  L(D), l i(D) : functions of diagram D 
a, /?, B : sets of branches 
a, b, c, d ,  f: matrices 
U, w : vectors (dl : number 

0 8.1 : n(C) : function of circuit C 
$ 8.2: S t , k ,  s i , k ,  R, ,k ,  F g ,  sets of diagrams 

CO,, CO; : sets of subscripts. 

$ 5 :  
$ 7 :  

1. Introduction 

A coupling-recoupling coefficient (CRC) of SU(2) is most easily described by its Jucys 
graph (Jucys and Bandzaitis 1965, El Baz 1969, Bordarier 1970). Generating functions 
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for the 33, 6j and 9j coefficients were obtained by Schwinger (1952, see also Biedenharn 
and Van Dam 1965 pp 229-79) in a creation and annihilation operator approach. In a 
treatment of the SU(2) group based on entire function spaces Bargmann (1962, see also 
Biedenharn and Van Dam 1965, pp 300-16) obtained generating functions for the 3j 
and 6j coefficients. Generating functions for some other CRC were derived in the Barg- 
mann scheme: by Wu (1972) for the 9j and by Huang and Wu (1974) for the 12j and 15j 
coefficients. 

In this paper a general formula for the generating function of an arbitrary CRC is 
derived. For a Jucys graph G we define the generating function of the CRC it represents 
($ 2). The significance of graph G is made clear in $3.  We introduce certain graphs 
drawn on G that we call diagrams of G ($ 4). A monomial M ( D )  is defined (5  5) for every 
diagram D of graph G. The final formula for the generating function is expressed in 
terms of the sums of M(D) over two finite sets of diagrams of G. 

At first, we use the method Bargmann (1962, see also Biedenharn and Van Dam 
1965, pp 300-16) used to obtain the generating function of the 6j coefficient. A general 
CRC is obtained essentially from 3j coefficients by summations on projection quantum 
numbers. Its generating function is expressed in terms of integrals of a product of 
generating functions of 3j coefficients. An algebraic expression for the generating func- 
tion is then obtained ($ 7) by carrying out the integrations. At this point there is a slight 
difference from Bargmann’s method: here all the integrations are carried out at one stroke 
whereas in Bargmann (1962, see also Biedenharn and Van Dam 1965, pp 30&16), Wu 
(1972) and Huang and Wu (1974) the integrations are carried out in several steps. 

In $ 8 the algebraic expression is transcribed in terms of sums over generally infinite 
sets of diagrams and these sums are reduced. The final formula only contains finite sums. 

The usefulness of the generating functions is illustrated in $ 9  where an explicit 
formula for an arbitrary CRC is extracted and in 9 10 where an example of recursion 
relations is given. Also in $ 9 we prove that the symmetries of the 3j, 6 j  and 9j  coefficients 
induced by invertible linear transformations on the j of the coefficients, are the known 
symmetries of the coefficients. 

2. Definition of the generating function (DG 

In this section we definea number ofnotations, most ofwhich areadopted from Bargmann 
(1962, see also Biedenharn and Van Dam 1965, pp 300-16), and the generating function 
OG of a Jucys graph G. 

We utilize Jucys graphs with only two types of free branches (CO- and contravariant) 
and one kind of vertex. The diode symbols represent 2jm coefficients. For the sake of 
simplicity we shall assume most of the time that the graphs do  not contain diode symbols. 

A Jucys graph G is made up of a vertices, b free branches and c bound branches. 
Here G is considered as a structure, not assigning peculiar values to the j and m. For 
every vertex U, where three branches j ,  , j ,  and j, meet, we define : 

ki = Jc-2ji 
We call k ,  , k , ,  k 3  the I indices of vertex U. The triangle condition ( j ,  , j ,  , j,) is equivalent 
to  the condition : ki E N (1 < i 6 3) ( N  is the set of non-negative integers). For every 
free branch (j, m) we define K = j + m, A = j - m  that we call the 1 indices of the free 
branch. The condition m projection of j is equivalent to  K E N, i E N. We arrange the 
I indices of the vertices and free branches as an ordered set L = ( I I ,  I , ,  . . . , I,) with 

J ,  = jl  +j,  +j,, (1 6 i < 3). 
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n, = 3a + 2b. When the j and m take all possible values compatible with triangle and 
projection conditions, L runs on a subset E ,  of NnG (the I indices are not independent : 
to every bound branch j ,  corresponds the relation k, + k ,  = k ;  + k;  (= 2jl), to every 
free branch ( j ,  , m,) the relation K ,  + I ,  = k ,  + k, (= 2j1)). For every L E E, .  correspond- 
ing to particular values of j and m, we denote the value of the CRC by GL or by Gj,,, , ,  

and we define a normalization constant 

rI(J"+l)! 1'2 

N L =  ( [ L ! ]  ) ' 

where the product runs over the vertices of G and [ L ! ]  = , . . lnG, .  I 

We now define the generating function 0, of graph G as an entire function of 
T = ( T ~ ,  5 2 , .  . . , T ~ )  E Cnc by 

aG = NLGJLI, ( 2 )  
LEEG 

where dL1 = z779 . . . ~ k .  We say that T~ is the variable corresponding to the I index li. 
Instead of T ~ .  we shall often use the notation ti or v i  corresponding respectively to 
1 indices of the type K or i. 

3. Elementary operations on graphs and generating functions 

The graphs of the 3J coefficient (A; i;;;) and of the 2jm coefficient ~5,~. i&,,,,r are represented 
on the left of figures 1 and 2. Their generating functions are known and will be given in 
$ 6 .  The most general CRC is obtained from 3j and 2jm coefficients by carrying out a 
sequence of elementary operations : product, change of type of an index (CO- and contra- 
variant), permutation o f j  and summation on m. In terms of graphs these operations 
are : union of graphs, changes of the type of a free branch and sign of a vertex, connecting 
of two free branches. When these elementary operations (to which we add the change of 
direction of a free branch) are made on Jucys graphs, the generating functions transform 
in a definite way that we now describe in detail. 

j"' ? 

- 5t' - Vf' 

Figure 1. The graph, two open diagrams and their 
associated monomials for the 3j coefficient. 

Figure 2. The graph, two open diagrams and their 
associated monomials for the 2jm coefficient. 

3.1. Product 

To the product of two CRC of graphs G' and G" corresponds the union of the graphs 
G = G' v G" and the product of the generating functions 0, = @,, @,.. . 

3.2. Types of a free branch 

CRC with CO- and contravariant indices are described by graphs with two types of free 
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branches (figure 3, where, as in the following, we represent part of the graph as a box). 
The generating function of G is denoted by @,(e, g, tB), where, as in the following, the 
variables T B  correspond to the I indices LB of part B of the graph and the first variables 
correspond to the I indices of part G - B (here the variables 5 ,  g correspond to the I 
indices of the free branch K, A). Graphs G and G' of figure 3 are related by 
G;,,,,, = (- 1)--'"Gj-,,,,, 0 r . h  terms of I indices G L A L B  = ( -  l ) I K L B .  We then have: 

@c*(t', q', 43) = @64 - U', e', 7B). 

U 
G G' 

Figure 3. Change of the type of a free branch. 

3.3. S i g n  of a tierrex 

At each vertex the branches are ordered but for a cyclic permutation. This order is 
indicated by a + or - sign. For the graphs in figure 4 we have 

= ( - - 1 p + j z + j 3 ~ .  , , G'. . . 
J 1 J 2 J 3 . .  . J I J I J 3 ~ ~ ~  

or 

G k i k 2 k 3 L ~  
- ( - l ) k i + k z + k 3  

G h l k 2 k 3 L B  - 
and 

@,,(T;, 7; , r ;  , ~ b )  = QG( - 5;  , - .r;, - 5; , &), 

where the variables r; , T ; ,  T ;  correspond to the I indices k ,  , k 2 ,  k ,  of the vertex. 

G G' 

Figure 4. Change of the sign of a vertex. 

3.4. Contraction 

For the CRC GJ.,,,. j . , m , f . . .  (figure 5 )  the contraction on the CO- and contravariant indices 
m' and m" is made whenj' = j" by summing over m' = m". Graph G corresponds to the 
definition : 

G,, = 1 G;,,,,, j , m . . . .  = 1 hKsK, ,  hard,, GLIArKllAllLB, 
m' 

G' G 

Figure 5. Contraction. 
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where the second sum is over L‘ = (K’, j.’, K”, 1“, LE) € E G ,  with given L B .  The cor- 
responding graph G is also given in figure 5 .  Since NL, = (IC’! ;.’! K ” !  1”!)-1/2NLB, the 
generating function of G is obtained from the series expansion of (Dc.(5’, q’, t“, q”, rE)  
by replacing 5‘“’ q’” 5“”” q””’ by K’!  I.’! dKZKr, 6A.,.f. Remarking that 

K’! R ‘ !  dKSK,, 6,.,.. = 5“’ vi’ tK” q”‘ dp,(() dp,(q) 

(where for z = x + iy, 2 = x-iy dp,(z) = 7 c - 1  e-” dx dy is integrated over R z )  the 
generating function (DG can be expressed as : 

3.5. Direction of a bound branch 

From the definition of contraction, for two CRC represented by graphs G and G’ (figure 6 )  
differing by the direction of branch j ,  we have 

G G‘ 

Figure 6. Change of the direction of a bound branch 

Likewise, changing the direction of the diode symbol in the 2jm coefficient (figure 2) 
gives a factor ( -  1)” and a similar relation between generating functions. 

4. Diagrams 

This paragraph is devoted to the definition of certain graphs drawn on the Jucys graph. 
For a Jucys graph G we denote by a, b . .  . the vertices, by (ab), or (ba), with s = 1, .  . . n 
the n branches (n  < 3) connecting a and b. A passage at vertex b is defined as the ordered 
set of two different branches # = (ab), and 4’ = (bc),, which are linked at vertex b. 
We represent it by ]# #’[ or ]a  b e[ ,  where to simplify notations subscripts s and s‘ are 
not expressed. Similarly, from now on, branch (ab), will be denoted by (ab), omitting 
subscript s. Branch # (or 4’) and passage 14 4’[ are said to be connected. A path is an 
ordered sequence of alternating branches and passages connected one to the following. 

Example : # = (ab), 14 + I [ ,  4’ = (bc), ]4’#”[, #“ = (cd). 
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This path is represented by [a  b c d ]  or [$ b c $”I. The direction of the path on branch 4’ 
is the one from b to c. The extremities of [q5 b c 4”]  are branches 4 and 4”. We use the 
notations ] a  b c d ]  or 14 b c 4’1 to represent the path obtained from the preceding one 
by striking out branch 4, and similarly [4 b c 47, 14 b c #’[ etc. Paths [4 b .  . . z 4’1 
and [4’ z . . . b 41 are said to be reversed. A free path is a path whose extremities are free 
branches. A directed circuit is an ordered cycle of alternating branches and passages 
connected one to the following. 

Example : 4 = (ab), 14 $’[, 4’ = (bc), ]4’4”[, 4” = (ca), I&’, 4[.  

This circuit is represented by (a b c) or ( b  c a) or ( c  a b)  (this notation causes no confusion 
with that for branches). A n circuit is a circuit that can be separated into n identical 
circuits (n > 1) (example: ( a b  a b)). A circuit which is not a n circuit is called non-n. 
Circuits (a b c )  and (c b a) are said to be reversed; they both represent the same non- 
directed circuit. A set D of paths P1 , P ,  . . . and circuits C,, C2. . . (or : paths and non- 
directed circuits) is called a directed (or : non-directed) diagram and it will be represented 
graphically on graph G by thick lines with directions indicated if necessary by arrows. 
We say that diagram D is composed of paths P , ,  P 2 . .  . and circuits C,, C 2 . .  . . The 
passages and branches of a diagram D, each passage or branch being counted as many 
times as it appears in D are called the elements of D. Their set will be denoted by g(D). 
A diagram the elements of which are not repeated is said to be simple. A closed diagram 
is a simple diagram composed of n non-directed circuits (n 2 1). An open diagram is a 
simple diagram composed of one free path and of n non-directed circuits (n 2 0). 

We define the following sets of diagrams of G, V being a set of branches of G : 

9 = {diagrams of G} ; 
gV = {D E 9 : some branches of V appear in qD)} ; BV = 9 - aV ; 
W, = {D E 9 : every branch of V appears exactly once in qD)} ; 
K ,  = {closed diagrams) ; 
R, = {open diagrams} ; 
H, = { non-directed circuits} ; 
H’, = { non-directed, non-n circuits} ; 
FG = {free paths): 
F h  = {free paths with different extremities} ; 
QG = {simple free paths}. 

The sets K , ,  R, and QG are finite. The other sets are generally infinite. 

5. The function D -+ M(D) 

In the following paragraphs, various algebraic expressions will be interpreted in terms 
of diagrams by means of a monomial M ( D )  defined for every diagram D. If D is a 
directed diagram we construct the monomial M ( D )  by multiplying the following factors 
which are associated with various parts of D: 

(a) For every free branch j m  belonging to qD), of 1 indices K, A and corresponding 
variables 5 ,  q, we associate a factor given in figure 7 and depending on the type of the 
branch and on the direction of the diagram on the branch. 

(b)  For every passage 3 j ,  j 2 [  belonging to q D )  (vertex v is connected to branches 
j ,  , j , ,  j 3  ; the I indices of v are k l  , k 2 ,  k3  and the corresponding variables zl, t2, z3) 
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(see figure 8) we associate the factor T~ (or - T ~ )  if the order of the branches at the vertex 

(c) For every bound branch belonging to  B(D) (figure 9) we associate a factor - 1 

(d )  Every time diagram D passes backwards through a diode symbol (figure 10) 

(e)  For every circuit in D we associate a factor - 1. 

i s j l , j 2 , j 3  (orJ2, j l , j3) .  

(or + 1) if the directions of the branch in D and G are identical (or opposite). 

we associate a factor - 1. 

Figure 7. Computation of M ( D ) .  Figure 8. Computation of M(D) .  

Figure 9. Computation of M ( D ) .  Figure 10. Computation of M(D) .  

Remarks 

(i) M ( D )  = M(D‘)  if D‘ is the diagram obtained by reversing the direction of some. 
circuits in D. Thus M ( D )  is also defined for non-directed diagrams. 

(ii) M(D”) = - M ( D )  if D” is obtained by reversing the direction of a path of D 
whose extremities are bound branches. 

(iii) The monomial M ( D )  is transformed in the same way as the generating functions 
in the elementary operations in & 3.2, 3.3 and 3.5 (diagram D remaining unchanged). 

(iv) If diagram D is composed of diagrams D, and D,, then M ( D )  = M(D,)M(D,). 
If diagrams D and D’ are composed of n and n‘ circuits only and have the same set of 
elements, then M(D)  = ( -  l)”-”’M(D’). 

(v) In the following paragraphs, there occur infinite sums X M ( D )  and products 
Il(1 + M ( D ) )  over sets of diagrams like H G ,  HL and F , .  Since the number of diagrams 
of these sets that have p elements is an O(pp) for p + E, the sums and products are 
absolutely convergent for sufficiently small T .  

We also define the functions D + E(D) into { - 1, + 1 >, D -+ li(D) into N (1 < i 6 nG) 
and D -+ L(D)  = (Il(D), lz (D),  . . . , lnG(D))  into N““ by setting M ( D )  = E ( D ) T [ ~ ( ~ ) ] .  We 
call L(D)  the 1 indices of diagram D. In 5 9 it will be shown that the 1 indices of a diagram 
composed of circuits and free paths can be interpreted as the 1 indices of a CRC. 

6. The generating functions for the 3j and 2jm coefficients 

For the 3j (figure 1) we denote the I indices by k , ,  k,, k ,  (vertex), K ~ ,  ii (branch j imi  
1 d i d 3) and the corresponding variables by T ~ ,  T , ,  T ~ ,  t i ,  vi (1 d i d 3). There are 
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M ( T )  = - 
T€RiJ  

'51 5 2  5 3  

5 1  5 2  5 3  3 

111 v 2  v 3  

The two open diagrams of the 2jm are given in figure 2, from which : 

7. Algebraic expression of the genera- function (PG 

In this section we obtain an algebraic expression for the generating function aG by 
starting from the generating functions for the 3j and 2jm coefficients and carrying out a 
sequence of elementary operations (5  3). We represent (figure 11) graph G with its n 
bound branches i (1 < i < n) and p free branches i' (1 < i < p )  of arbitrary types (not 
represented), so that the box B contains only the vertices and diode symbols of the graph. 

G' 
Figure 11. Obtainment of graph G by contractions on G'. 

G is obtained from G' (figure 11) by n contractions, ie by connecting the free branches i 
and i (1 < i < n)  of graph G' (elementary operation of 0 3.4). Since G' is obtained from 
3j and 2jm coefficients by the elementary operations of @ 3.1, 3.2 and 3.3, we get using 
equations (34 b) and remark (iii) of 6 5 : 

There is either zero or one open path (denoted by [ i  k]) starting from a given branch 
i and ending at another given branch k in graph G'. We recall that the paths obtained 
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by removing branch i and/or k from [i k ]  are denoted by ] i  k [ ,  [ i  k [  and ] i  k ] .  If path 
[i k ]  does not exist we put M([ i  k ] )  = 0. The branches i and k are taken from the sets 
f l = [ l , 2 , 3  . . .  n}, 8 = { 1 , 2 , 3  . . . i i }  and ~ = { 1 ' , 2 '  . . . p ' } .  We put for i ~ f l u a ,  
j E f l u P ,  k E u ,  l e u  

__i  

be vectors of the space C2", where ti ,  v i  are the variables corresponding to the 1 indices 
of the free branch i E p U b ;  U . U' = Z:! uiu{ is the scalar product of U = (ul  . . . u2,,) E Cz" 
and U' = ( U ;  . , . U;") E C2" ; at is the vector with component i given by (at)i = Z;Z a i j t j .  
We have z = f t '  with 

f = (*) 
and 

M (  T )  = z.at + z.c + w.t +\dl = t'.fat + t'. fc + w.t + Id\. 
TE%' 

According to $ 3.4 the generating function OG is obtained from equation (4) by : 

exp( - i.fat - t f u  - w.t - Id[) d,u2n(t) OG = s 
where dp2,,(t) = I l z l  dpl(li). The integral can be computed, for fa sufficiently small, by 
the method of the appendix of Bargmann (1962, see also Biedenharn and Van Dam 
1965, pp 31 5-6) : 

8. Evaluation of the generating function in terms of closed and open diagrams 

Most of the quantities in equation (6) were interpreted (4 7) in terms of diagrams of G'. 
In this section interpretations in terms of diagrams of G are obtained. We first trans- 
form the determinant (§ 8.1) in equation (6),  expressing it as a generally infinite product 
over the non-directed non-n circuits of G. With the aid of a formula in the appendix it 
is reduced to an expression containing only a finite sum over the closed diagrams of G. 
Similarly ($8.2) the exponent in equation (6) is shown to be minus the sum of M ( T )  
over the free paths T of G. It is then expressed in terms of finite sums only over the 
closed and open diagrams of G. Some examples are considered in 9 8.3. 
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8.1. Transformation of determinant in equation (6) 

Letting x = -fa we have 

where the sums are made on ie j U I s ,  j e  fl  U 8, k E  /I U 8 . .  . . We now interpret equation 
( 7 )  in terms of diagrams of G. For i E /?, j E /? U 8, we have x i j  = - a i j ,  x i j  = a i j ,  hence 
x i j  = M(Pi j ) ,  x i j  = M(Pi j ) ,  where Pij is the path of G composed of branch i and path 
]ij[ (as defined in p 7 )  and Pij  is the path of G composed of branch i and path ] i j [ .  Here 
the paths ]i j [  and ]i j [  of G' which are contained in box B (figure 11) are interpreted as 
paths of G. 

Every term of equation ( 7 )  is then of the form : 

- X i j X j k . .  . xmi = -M(Pij)M(Pjk). . . M(Pm()  = M ( C )  

where C is the circuit PLj,  Pjk . . . Pmi.  Conversely, let C be a non-directed circuit of q 
branches; if C can be separated into n identical non-lr circuits S (n 2 l), we set .(C) = n .  
Then M ( C )  = - [ - M(S)]"'c'. M ( C )  appears 2q/z(C) times in equation (7). So equation 
( 7 )  is transcribed as a sum on the non-directed circuits, and then on the non-directed 
non-lr circuits : 

In det(1 - x )  = 2 M(C)/n(C) = 2 1 [M(S)-%M(S))*  + ~ I V ( S ) ) ~  - . . . ] 
C e H c  S E H ~  

= 2 ln(1 + M ( S ) ) .  
S 6 H k  

Hence 

n (l+M(S)) . 
S E H ~  i' 

From equation (A.5) (with V = 0 (null set)) in the appendix the product in equation (8) 
is expressed as a finite sum over the closed diagrams : 

det(1 +fa) = 1 + 1 M(D) ( D e K c  

8.2. Transformation of the exponent in equation (6) 

Expanding (1 - x)- in powers of x we get : 

(9) 

where the sums are on k ~ a , l E a , i ~ p u 8 , j ~ p u 8 , m E B u 8 ,  . . . .  For i E p , l E a  we 
have ( f b ) ,  = bi l ,  (f6)ii = -6, and then ( f b ) ,  = - -M(Qif) ,  ( f 6 ) i f  = - M ( Q i f ) ,  where Qii 
is the path of G composed of branch i and path 3 i  I ]  of G' (now interpreted as of G) and 
Q i f  is the path of G composed of branch i and path ] i  r ] .  

Every term of equation (10) is then of the form : 

ckh.y,j. . . x,,(fb),f = - M ( [ k i [ ) M ( P i j ) .  . . M(Pmq)M(Q,f) = - M ( T )  
where T is the free path of G :  [ki[, Pij . . . Pmn, Q n r .  Conversely to every free path T of 
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G there corresponds one term in equation (IO), if T passes over a bound branch of G, or 
one term in -Id/ if T does not pass over a bound branch. The exponent in equation (6) 
is thus expressed as a sum over the free paths : 

If T and T' are reversed free paths that start and end on the same free branch, then by 
S 5 ,  remark (ii) M ( T )  = - M ( T ' )  so that the sum in equation (1 1) can be limited to 
T E F L .  

We now define a procedure that decomposes every free path into a simple free path 
and circuits. It will then be possible to simplify equation (1 1). We need some notations. 

Let t = (41u1uz  . . . u p 4 p +  1] E Q G  be a simple free path of p vertices. We introduce 
the following two sets of labels occurring in t : o, = { 1,2,. . . , p -  13, o; = w, U {p} and 
we put 4; = ( U ~ - ~ U J E  q t )  for 2 < i < p .  For k e a ;  let S I , ,  be the set of paths of the 
form [ U , .  . . Z U , ~ , +  that do not contain branches 4i (1 < i < k )  and Sl,k the set of 
paths of S,,k that begin with branch + k +  (so Si., = $3). For k E U, let R,,,  be the set of 
non-directed circuits that pass over branch &+ exactly once and that do  not contain 
branches q$ (1 d i < k ) .  

The procedure (P) is defined as follows. Let T = [Y 1a1a2 . . . a n y n +  1] E FL be a free 
path of n vertices and whose extremities Yl and Y,+l  are different free branches. We 
put yk = (ak-]ak)E&j(T) ( 2  < k < n). If T i s  not simple let L' be the first vertex in the 
sequence a l a 2 .  . . a, that appears at least twice, k and k' the smallest and greatest num- 
bers such that ak = a,' = t'. Put T' = [ y , U l  . . . a,&'+ . . , y,,+ 11 E F L  and 

Then Tcan be reconstructed by inserting path T" into path T' at vertex a,. Notice that 
T" does not pass on branches (1 < i < k )  and that @(T) # B(T')  U B ( T " )  in general. 
Repeating on T' the same process as on T, and iterating we obtain uniquely determined 
t E Q G ,  of c wi and for k E w' paths & E 

Conversely let t~ Q G ,  w' c o; and for k E W '  paths T,ES, ,k ,  then by inserting, for 
every k in w', path Tk at vertex u k  of t  we obtain a free path T E F L ,  which when decom- 
posed by P gives back the same t ,  w' and T,. So the correspondence : 

is one-to-one. 
Let Fh be the set of paths T E F L  such that in P every T, E Si,,. 
If in P, for a given k ,  E s , , k - s i , k  then it  is of the form & = [ U k z y I y ,  . . . yqZu&k+ 1[, 

with identical first and last branches ( u k z )  and T i  = [ u k z y q .  . . Y2YlZUk$k+ 1[ is a path 
of S1.k- s ; , k  that is different from Tk. By replacing Tk by T i  In P we obtain T' instead of 
T, and from 4 5, remark (ii) M(T')  = - M(T) .  Thus C T E F G  - F &  M ( T )  = 0. 

If T E FE we pursue the decomposition further. For a given k ,  let r(k)  be the number 
of times branch + k +  appears in & E s:,k (r(k)  2 1). can be decomposed in an ordered 
sequence C: ,  Cl , .  . . . c$.) of circuits of R l . k .  Conversely let C:, C l ,  . . . , C:(k) be an 
ordered sequence of arbitrary length r(k)  3 1 of circuits of RI, , .  If C: = (U!&+ . . . Z )  
we define path Pi = [U&&+ . . . Z U k @ k +  I[1 Then by joining paths P I P 2  . . . P,(k) we 
obtain a path & of s i , k .  
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In summary, the correspondence 

is one-to-one, and: 
r l k l  

The sets (U,,k)keo, form a partition of HI, n gWt where K is the set of the bound branches 
of t. Equation (1 2) becomes : 

M ( T ) =  M ( t )  n ( l+M(C))- '  
TEFG tEQG CeHkngw, 

[EQG CeHb n g w ,  

And by equation (A.5) (used with V = 0 and V = W) in the appendix : 

TEFG 1 M ( T ) =  ( 1 +  DEKG c M(D))-' lEQG M(t) ( l+  D E K G ~ ~ w ,  c- 

From equations (6),  (9), (11) and (13) we obtain the final expression for the generating 
function : 

'DG = A' exp - A  M ( T )  ( T E ~ G  

The generating function OG is thus expressed in terms 'of the finite sums of M ( D )  over 
the closed and open diagrams of G. In order to write OG explicitly one has to determine 
the closed and open diagrams of graph G and compute the corresponding monomials 
M ( D )  by the rules in 5 5. 
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8.3. Examples 

For a 3nj coefficient, equation (14) simplifies to 

The 6j  coefficient {;;;j;;jy;] is represented by a tetrahedron (figure 12) with vertices 
r/; (0 < i < 3); branch j,, ( i  < k )  connects r/; and V,; we label the 1 indices of vertex r/; by 
kij  (0 < j 6 3, j # i) and the corresponding twelve variables by T ~ ~ .  There are seven A7A A 

- 12 3 

3 T12'02T32 r13'02'37T20 

Figure 12. The graph, two closed diagrams and their associated monomials for the 6j 
coefficient. 

closed diagrams (which are simple circuits) : four circuits with three branches and 
three circuits with four branches; one of each kind is drawn in figure 12, and the cor- 
responding M ( C )  is given. From equation (14): 

@ 6 j  = ( l  + T10T20T30+T01T31T21 + T32502T12 f T23T13T03 +TOITlOT23532 + T02T20T13T3 1 
+ T03530T1 2?2 1 ) - '  

which is equation (4.15) of Bargmann (1962, see also Biedenharn and Van Dam 1965, 
p 313). 

The 9j  coefficient 

jl j z  j3 

J 5  ' J 6 1  

37 J s  J9 

is represented by a cartwheel diagram (figure 13) with vertices VI, V,, V,, Vl), V,,, V3,. 
The 1 indices of vertex (or : l$) are labelled k, j  (or : kij)  (1 6 j 6 3), the corresponding 
variables by sij (or: rlj). There are fifteen closed diagrams (which are simple circuits): 
nine circuits D, (1 < a < 9) with four branches and six circuits D,, (1 < a 6 6) with 

1 '  2 
+ + 

.C 

3 +  3' + 
Figure 13. The graph, two closed diagrams and their associated monomials for the 9j 
coefficient. 
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1 1 1  1 1  1 1 1 1 
2 1 1  1 1  1 1 1  1 
3 1 1  1 1 1 1  1 
4 1  1 1  1 1 1 1 1 
5 1  1 1 1 1  1 1 1 
6 1 1 1  1 1 1 1  1 
7 1 1  1 1  1 1 1 1 
8 1 1  1 1 1  1 1 1 

-l 

9 1 1  1 1  1 1 1 1 > 

six branches. We describe these closed diagrams (table 1) by their 1 indices L(D,) and 
the value of €(Do) (cf 0 5). We also give the corresponding values of J, .  As will be clear 
from $ 9  -@,)/2 = 4 (1 < a < 9) or -c(D,,)/4 (1 < a’ < 6) is the value of the 9j 
coefficient with the indicated values of ji. In figure 13 are drawn diagrams D ,  and D,.  . 
The generating function can be written down at once from table 1, thus reproducing 
the result of Wu (1972), but this will be omitted. 

> -1 

Table 1. Closed diagrams D, (a = 1,2, .  . . , 9 ,  l’, 2’. . . . , 6 )  of the 9j  coefficient (figure 13):  
j indices, 1 indices (corresponding to vertices VJ, $D,). Null values are omitted. 

Huang and Wu (1974) have computed the generating function of the 12j coefficient 
represented in figure 14. Their result can be obtained from equation (14) in which there 
are 3 1 closed diagrams : 29 simple circuits and two diagrams composed of two circuits 
(one composite diagram D is represented (figure 14), and M ( D )  is given in the notation of 
Huang and Wu 1974). 

The graph G’ for an njm coefficient is a tree in which there are no circuits. The 
generating function is then expressed by the same formula as for the 3j coefficient 
(equation (4)). 

34- 2’ - 

Figure 14. The graph, a closed diagram and its associated monomial for the 12j coefficient. 
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9. Explicit expression for the CRC 

From the generating function, equation (14), we now obtain a general expression for 
any CRC. Symmetries are then briefly considered. 

(1  < i < p )  and C j  (1 < j d q )  
the open and closed diagrams. Expanding equation (14) we get 

For a Jucys graph G let us denote respectively by 

where the sum is over a = (a l ,  a 2 , ,  . . , ap)  E NP and p = (pl, p 2 , .  . . , B,) E N4 ; we have 
put la1 = C/'= xi, 181 = Zj= p j .  By comparing equation (1 5 )  and equation (2) we obtain 
the expression : 

where the summation is over the a E N P ,  /3 E N 4  such that 
" a 

L = 5 x,L(T,)+ 2 PjL(Cj) 
i =  1 j =  1 

and N ,  as defined in equation (1). 
The sum in equation (16) can be interpreted as being over all the possible ways of 

constructing diagrams from open and closed diagrams that have the same I indices as 
the calculated CRC. 

For the 3j and 6j coefficients equation (16) can be written in terms of a summation 
on one integer and yields Racah's formulae. 

To each closed or open diagram D (=  ?; or Cj)  with s vertices, t circuits ( t  2 0) and 
r path ( r  = 0 or 1) there corresponds a CRC whose 1 indices are L(D). The value of this 
CRC can be computed from equation (16) and is (-1)'2-s"2(-2)'c(D). The c(T) and 
c(Cj) are thus interpreted in terms of the CRC whose 1 indices are the 1 indices of D. 

9.1. Symmetry 

Let EL be the set of L E E ,  that satisfy polygonal conditions; we denote by Ei (1 < i Q r )  
the simple non-directed circuits and the simple free paths of G ;  we put e, = L(E,) E E;. 
The set E ;  has the following properties : 

(i) if L,  E EL,  n, E N ( 1 < i < h)  then Zf= niLi E EG ; 
(ii) if L E  E(, there exist ai E N ( I  Q i Q r )  such that L = C;= a,e,; moreover if 

L = ej the ai are unique and ai = dij. 
Property (i) expresses the fact that EL is closed by addition. If G, # 0 property (ii) 

stems from the above interpretation of equation (16), since the 1 indices L (which belongs 
to EL) can be written as in equation (17). In fact it is possible to prove property (ii) not 
assuming G, # 0, but this will be omitted. The last part of property (ii) expresses that 
the ej are extrema1 elements in EL. 

We define a symmetry to be a function 4 :  E; -+ EL such that G,,,, = X,G, where 
X ,  is a simple algebraic expression. Let us look for symmetries such that 4 is an 
invertible linear function. Then 4 is a permutation of Indeed putting 

&ei) = aijej  and 4 - ' ( e i )  = C bijej 
j =  1 j =  1 
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(the a,, and bij not necessarily uniquely determined) we have 

e, = bijajkek 
i k  

and from property (ii) of EL we obtain if b i j  # 0, ajk = bki/bi j  for 1 6 k 6 r. Since 
aj,  E N  and b,, E N ,  a j ,  = l / b i j  implies aj i  = 1, and &ej) = e , .  

We examine the case of the 9j coefficient. The E ,  are the fifteen closed diagrams D, 
described on table 1. We put d, = L(D,), where a runs over A = { 1 , 2 . .  .9 )  and 
B = { l’, 2 ’ .  . .6‘}. s = d C a E A u  d, E E;  is an invariant by 4. The only sums of three 
elements d, that add up to s are : 

d , . + d , , + d , .  = d 2 3 6 ’  , + d  . + d  I = s (18) 

So 4 is a permutation of (d i ) iEB.  We have d l ,  = s - d , - d , - d , ,  d2 ,  = s - d  1 6 8  - d  - d  
so d , , + d , .  = 2 s - 2 d , - d , - d 6 - d 8 - d ,  and in general for a E B ,  b E B ,  a # b :  
d ,+d ,  = 2 s - 2 d , - d d - d , - d , - d ,  where c, d, e, f, g are different indices of A,  this 
expression being unique. From this it follows that 4 is determined by the 4 ( d i ) i E B :  
for example if 4 ( d , , )  = d, ,  4 ( d 2 , )  = d,  then +(d , )  = d, .  Moreover, equation (18) is 
invariant by 4. This leaves for 4 6 x 6 x 2 = 7 2  choices which are the known symmetries 
of the 9j coefficient. 

For the 3j coefficient the six extremal elements of E; are linked only by a relation 
like equation (18). The same method yields the 6 x 6 x 2 = 72 Regge (1958) symmetries 
(see also Biedenham and Van Dam 1965, pp 29G7) .  

For the 6j the seven extremal elements of E; are linked only by relation : 

e , + e 2 + e 3  = e , + e , + e , + e ,  

and the same method gives the 6 x 24 = 144 Regge (1959) symmetries (see also Bieden- 
ham and Van Dam 1965, pp 298-9). 

We have thus proved that the only invertible linear symmetries of the 3j, 6j and 9j 
coefficients are the known symmetries. 

10. Recursion relations 

By differentiating mG, many relations between G ,  can be obtained. We give an example 
when G is a 3nj coefficient. Since 

where K ,  is the set of closed diagrams D whose I index li(D) is different from zero (and 
then equal to l ) ,  we get: 

Put G ,  = 0 if L 4 E,. For L E E ,  we obtain the recursion relations : 

1 E(L’) (Ik(L) - I k (  L ’ ) )N,  - ,.G, - ,’ = 1 C( L”) (l,(L) - Ii(L”))NL - ,,.G, - ,,,. 
L ’ E U K , )  L ” E L ( K r )  
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11. Concluding remarks 

Some other known results come out quite easily from the present point of view: 
symmetries of the coefficients (compared with the symmetries of the graph) ; simplifica- 
tion of graphs with a branch j = 0 or containing a diode symbol linked to a bound 
branch; formula (25.1 5 )  in Jucys and Bandzaitis (1965) expressing a doubly stretched 
9j coefficient in terms of a 3j coefficient. 

The explicit formula, equation (16), expresses the CRC as a summation of products 
without factorization of terms. The usual method for the numerical computation of a 
CRC, say a 3nj coefficient, is to express it as a sum of products of 6j coefficients, each 6j 
coefficient being obtained by a summation of products and quotients of factorials. 
Equation (16) is thus less efficient for numerical calculations. 

Appendix. Proof of some relations between sums and products over sets of diagrams 

Two relations are of use in 0 8. The first one equation (A.3) relates a sum and a product 
over sets of circuits that pass over a given branch w. It is obtained by calculating a 
determinant in two different ways. The second relation equation (A.5), which simplifies 
an infinite product to a finite sum is a consequence of the first one. 

Let w be a branch joining vertices u and U' in a Jucys graph G and put W = {w}. 
Let p be a subset of H; U Bw and [ (or correspondingly: [') be a set of different paths of 
the form [w U .  . . u w]  (or : ]w U ' .  . . U' wD and such that branch w appears only at the extre- 
mities. We designate by ( and F the sets composed of the reversed paths of [ and ['. 
We put v = p U [ U [' U ( U F and we suppose that [ U and ( v F are disjoint. 
The reversed path of i E  v - p  is designated by T. For i ~ p  we define P(i) as a path 
obtained by opening circuit i at branch w. P(i) will be interpreted as path ] w  U' . . . U w] 
or [w U .  . . U' w[ which give the same monomial M(P(i)). For i E v - p  we put P(i) = i .  

We now define a square matrix x composed of identical columns by putting 
xij = M(P(i))  for i E v ,  j E v .  

Matrix x is of rank 1, so: 

det(1 -x)  = 1 - 1 xii = 1 - M(P(i ) )  = 1 + M(i), (A. 1) 
i sv  i sp i EP 

since for i E [ U [', M(i) = - M(i) (45, remark (ii)). We also compute: In det(1 -x)  
by equation (7) of 9 8.1 : 

lndet(1-x) = - N(i , , i , )++ x N(i l , i z , i 3 )+  . . .  
i l i z  ili2i3 

where we put N ( a ,  b, c . . . z )  = xObxbc.  . . x,, and where the sums are over i, E v. As in 
0 8 we interpret the monomials N (a. . . z) in terms of circuits. But here some monomials, 
like N(a)  or N ( a ,  b, a', c) with a E [, a' E [, b E p ,  c E i' cannot be associated with a circuit. 
We now show that these monomials cancel. Let S = ( i l  , . . . , i,) E v" and put i m + j  = ij 
for j = 1 , 2 . .  . m. If there exist integers k and k' (1 < k < k' < 2m) such that both i, 
and i,. belong to one of the sets [ U  [ and [ 'U and such that ijEp for k < j < k' we 
call S non-c. Let s, be the set of non-c S E vm and put s; = v"' - s, - pm. Let A' (or : A) 
be the set of non-directed circuits that can be separated into circuits from p (or : and paths 
from v - p )  (each circuit and path may occur several times). If S = ( i l  . . . i,) E p" U s;, 
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then N ( S )  = -M(C), where C is the circuit of A formed from P(il), P ( i 2 ) .  . . P(i,); if 
S E s, there is no interpretation of N(S) in terms of a circuit. 

If S = (il , . . . , i,) E s, U s; = v”’ - p”’, k being the first integer such that i, # p, 
we define f(S) as being the sequence of v”’ - pm obtained from S by changing i, into i,. 
From the relations N ( S ) +  N ( f ( S ) )  = 0, f(s,) = s, and f(s&) = s&, we get 

1 N ( S )  = 1 N ( S )  = 0. 
SE% SssW 

If C E A‘ and C’ E A - A‘ are composed of m paths from P(v),  then - M ( C )  appears 
m/n(C) times in X s s U m  N ( S )  and -M(C’)  appears 2m/n(C’) times in ESESL, N ( S ) ;  to get 
rid of this factor 2 we rewrite equation (A.2) as:  

and by the same method that gives equation (8), we get : 

det(1 - x )  = n (1 +M(C)) .  
CeHknA 

Comparing with equation (A.l) we get: 

n ( l+M(C))  = 1 +  1 M(i) .  
CeHknA iw 

In particular for a set I/ of branches of G by putting p = HL n .“A, n gv and by taking 
5 U [‘ U ( U to be the maximal subset of 3, compatible with the definition of ( and C‘, 
wehaveA= H G n 9 & n a , a n d :  

Let A (or correspondingly: A’)  be the set of diagrams D composed only of different 
circuits from H; n gW n 3, (or: H b  n a,). For a diagram D and a set of diagrams S 
we define S x D to be the set of composite diagrams made up of D and of a diagram D’ 
from S .  Let us write, for diagrams D and D’, D - D’ if and only if B(D) = B(D‘).  It is 
clear that this is an equivalence relation in A (or: in A’)  defining a family 9 (or : 9’) of 
equivalence classes. If d E 9 (or d E F’), D E d and if D is not simple we say that 
d is not simple. Let d’ E 9’ be an equivalence class of A’ and D‘ E d‘ such that D’ is 
not simple, branch w appearing more than once in B(D’). d’ can be partitioned into 
sets of the form d x D“ with D” E A‘ n gw and d E 9 (and a set .d E 9 if D’ E A )  
these d containing diagrams passing several times on branch W .  Expanding the 
product, we rewrite equation (A.3) as : 

By comparing diagrams whose set of elements is identical on both sides of equation (A.4) 
we see that CDEd M ( D )  = 0 if .d n 9, = 0 and .d E 9. Since 

2 M(D’) = M ( D )  M(D”) 
D ’ e d  x D” ( D E &  1 
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we obtain 

M(D') = 0 
D ' E d '  

if d ' E 4' is not simple. 
From that it follows : 

n (1+M(C)) = 1+ 1 C M(D')  = 1+ M(D). (A.5) 
C e H b n B v  ~ ' E F '  D ' e d '  D e K c n P v  
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